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ABSTRACT 

 
This paper proposed the Huber’s M-estimator for estimating the 

population moments 𝑚𝑘. Eleven features of the population moments from 

twelve probability distributions, mean squared error, and bias were 

computed to compare the results of Huber’s and the classical estimator. For 

the Huber’s M-estimator, we used the trimming proportions p = 0.05, 0.10, 

0.15, 0.20 and 0.25 and compute the estimates for n=20, 30, and 100. The 

result confirms that the appropriate estimator of the population moments of 

the symmetric distributions is classical while the estimator with trimming 

proportion p = 0.25 is appropriate for the asymmetric distributions. 

Furthermore, the estimators with higher trimming proportions give smaller 

variances as compared to the estimators that have lower trimming 

proportions. 

 

Keywords:  Huber m-estimation, population moments, robust estimator, 

trimmed mean 

 

 

1.0  Introduction 

 

The moments describe the nature of the distribution. Some features such as 

the mean, the variance, the skewness, etc. can characterize any distribution. The kth 

population moment, or kth moment of the distribution f(x), is E(xk). Since it is often 

difficult or impossible to obtain the population observations, one should only get a 

sample from a population of interest and infer the characteristics of the population 

based on the sample data gathered. Because of this, the statistic 𝑚𝑘 is introduced to 

estimate the population moments. The basic idea of the 𝑚𝑘 is averaging the kth power 

of the observation and is represented by the formula: 𝑚𝑘 =
1

𝑛
∑ 𝑥𝑖

𝑘𝑛
𝑖=1 , 𝑘 = 1, 2, …  

 

The notion of a moment is fundamental for describing the features of a 

population. For example, the population mean (population average), usually denoted 

𝜇, measures the central tendency and the population variance which is usually 

denoted 𝜎2 or Var(y), is defined as the second moment of y centered about its mean: 

𝑉𝑎𝑟(𝑦) = 𝐸[(𝑦 − 𝜇)2]. The variance is widely used as a measure of spread in a 

distribution. Another feature of a population moment is the skewness that is referred 

to as the third population moment, which is commonly denoted as 𝛾1 and is 

mathematically defined as 𝛾1 =
∑ 𝑧𝑖

3𝑁
𝑖=1

𝑁
 where we take the z-score for each, cube it, 

sum across all N individuals, and then divide by the number of individuals N.  
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Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A 

distribution, or data set, is symmetric if it looks the same to the left and right of the 

center point. Further, the next feature of the population moments is the kurtosis that 

is referred to as the fourth population moment. Kurtosis is conceptually defined as 

the “peakedness” of a distribution and is denoted by 𝛾2. Some distributions are rather 

flat, and others have a rather sharp peak. A very peaked probability distribution is 

known as leptokurtic while a relatively flat distribution is platykurtic. However, a 

distribution that is somewhere in between is known as mesokurtic. One can determine 

the normality of the data by just looking at its histogram or by getting the value of its 

skewness and kurtosis. If, however, the value of the skewness and kurtosis of certain 

data is like the normal distribution, that is 𝛾1 = 0 and 𝛾2 = 0, then the data is 

considered as normally distributed. This is important because many statistical tests 

require normality assumption. 

 

 It is clear that 𝑚𝑘 estimates 𝜇𝑘 for all k and by the law of large numbers, that 

is 𝑚𝑘 → 𝜇𝑘    for all 𝑛 → ∞. Moreover, by Central Limit Theorem (CLT), 

√𝑛(𝑚𝑘 − 𝜇𝑘) → 𝑁(0, 𝑣2) as 𝑛 → ∞, 𝑣2 is the asymptotic variance. However, 

according to Slutsky’s Theorem, the variance of the kth moment is 𝑣2 = 𝑘2𝜇𝑘
2(𝑘−1)

𝜎2 

which is quite large for the higher order moments and makes the density estimate 

undesirable. It should also be noted that the estimates of 𝜇𝑘 using the 𝑚𝑘 is affected 

by the extreme values or by the presence of the outliers, especially in the higher order 

moments. These are the reasons why we proposed an alternative estimator of the 

population moments that will obtain a robust estimate and smaller variance. The 

concept of the proposed estimator is to trim both ends of the tail of the distribution to 

obtain robust estimates that would yield a smaller variance. This estimator is derived 

by using the Huber’s m-estimation. In this study, five trimming proportions (p = 0.05, 

0.10, 0.15, 0.20, and 0.25) are considered and then compared to the classical 

estimator. An estimator that obtains the smallest mean-squared error (MSE) is chosen 

to estimate the population moments and will be considered as the appropriate 

estimator. 

 

 

2.0  Basic Concepts 

 

Huber (1964) proposed a method of estimating a location parameter: the 

generalization of the Maximum Likelihood Estimation (MLE). This estimation 

method will obtain estimates that are robust, that is insensitive to departures from 

underlying assumptions caused by, for example, outliers. Robust estimators should 

have good performance under the underlying assumptions, and the performance 

deteriorates gracefully as the situation departs from the assumptions. The basic idea 

of this paper is to make use of the Huber’s M-estimation in estimating the population 

moments of the symmetric probability distributions. The essential form of the M-

estimation problem is the following: 
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Given a set of n independent and identically distributed random samples 

𝑥1, 𝑥2, … , 𝑥𝑛 with some probability density function f parameterized by 𝜃, the 

problem is to estimate the location parameter 𝜃. First, consider a distance function 

𝜌(𝑥𝑖 , 𝜃) that is given by 

 

  𝜌(𝑥𝑖 , 𝜃) = (𝑥𝑖 − 𝜃)2     (1) 

 

Since we have n random samples, then our function becomes 

 

  ∑ 𝜌(𝑥𝑖 , 𝜃)𝑛
𝑖=1 = ∑ (𝑥𝑖 − 𝜃)2𝑛

𝑖=1     (2) 

 

and our goal in here is to get an estimate of the parameter 𝜃 that minimizes this 

function. Hence, we have to differentiate the equation (2) with respect to 𝜃 (denote 

this as 𝜌(𝑥𝑖 , 𝜃)) and solve for the root of 𝜃. Thus, we have 

 

  ∑ 𝜑(𝑥𝑖 , 𝜃)𝑛
𝑖=1 = −2 ∑ (𝑥𝑖 − 𝜃)𝑛

𝑖=1    (3) 

 

Equate the result to zero and solve for 𝜃 to get the estimate. Thus we have 

 

  −2 ∑ (𝑥𝑖 − 𝜃)𝑛
𝑖=1 = 0  ⇒ 𝜃 = �̅�  (4) 

 

 The obtained estimate of 𝜃 is the sample mean that is affected by the outlier. 

Hence, consider another distance function:  

 

  𝜌(𝑥𝑖 , 𝜃) = |𝑥𝑖 − 𝜃|                (5) 

 

Similar to equation (2), our goal is to minimize the equation:  

 

  ∑ 𝜌(𝑥𝑖 , 𝜃)𝑛
𝑖=1 = ∑ |𝑥𝑖 − 𝜃|𝑛

𝑖=1                (6) 

 

Solving for the derivative with respect to 𝜃, thus, we have 

 

   


n

i

ix
1

, =  



n

i

ix
1

sgn2     (7) 

 

Equate the result to zero and solve for   to get the estimate. Thus, we have 

 

 



n

i

ix
1

sgn2   = 0         ̂  = median { ix }  (8) 

 

 which is highly robust, but unfortunately not very efficient. 

Again, consider another 𝜌 function 
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









,0
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,0

)( 2

ii xx     

cx

cxc

cx

i

i

i







   (9) 

 

Hence,  

    ∑ 𝜌(𝑥𝑖 , 𝜃)𝑛
𝑖=1 = {

−𝜃,
(𝑥𝑖 − 𝜃)2,
−𝜃,

   

cx

cxc

cx

i

i

i







  (10) 

 

So, we have 

 

   











,0

,2

,0

),(
1

 i

n

i

i xx     

cx

cxc

cx

i

i

i







 (11) 

 

 

Hence, the obtained estimator for   is  

 

  
   

 







rn

ri

k

ix
rn 12

1
̂  where r is the number of trimmed 

samples    (12) 

 

 

3.0  Methods 

 

 This paper assessed the performance of the proposed alternative robust 

estimator.  Simulation of observations in 12 distributions for sample sizes n = 20, 30 

and 100 was done to determine the estimates of the population moments. The 12 

probability distributions were chosen according to (1) type of distribution; (2) 

symmetry; and (3) kurtosis. First, the original data were standardized and computed 

the first up to the 11th sample moments of every probability distribution using the 

classical and the trimmed means with trimming proportions p=0.05, 0.10, 0.15, 0.20 

and 0.25. The process was repeated 100 times. The mean squared errors and bias of 

every kth moment (1st up to 11th) were derived. The variance of the classical estimator 

and the five (5) alternative estimators were also obtained. Finally, the averages of the 

MSE’s, bias, and variances of the estimates were computed. The estimator that yields 

the smallest MSE is regarded as the appropriate estimator, and the estimator that has 

the smallest variance is the most efficient estimator of a certain population moment. 
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4. 1  Parameter Estimation 

 

Definition 1.  

 

Let 𝑥1, 𝑥2, 𝑥3 …, be a random sample from a pmf or pdf f(x). For k  = 1, 2, 

3,… the kth  population moment, or kth moment of the distribution f(x), is )( kxE . 

The kth  sample moment is  

 

   𝑚𝑘 =
1

𝑛
∑ 𝑥𝑖

𝑘𝑛
𝑖=1  ,   𝑘 = 1,2, …  (13) 

 

It is clear that 𝑚𝑘 estimates 𝜇𝑘  for all k and by the law of large numbers: 

 

    𝑚𝑘 → 𝜇𝑘   for all 𝑛 → ∞   (14) 

 

Moreover, by the Central Limit Theorem: 

 

     √𝑛(𝑚𝑘 − 𝜇𝑘) → 𝑁(0, 𝑣2)   as  𝑛 → ∞  (15) 

 

where 𝑣2 is the asymptotic variance. 

 

Further, the Slutsky’s Theorem states that if a sequence of numbers 𝑎𝑛 tends 

to infinity as n  increases such that: 

 

   𝑎𝑛(𝑌𝑛 − 𝜇) → 𝑌           in distribution  (16) 

 

and if 𝑔(⋅) is a continuous and continuously differentiable function, then: 

 

  𝑎𝑛(𝑔(𝑌𝑛) − 𝑔(𝜇𝑛)) → 𝑔′(𝜇)𝑌  in distribution.               (17) 

 

Hence, the large sample variance of )( nYg  is approximately equal to : 

 

   𝑉𝑎𝑟[𝑔(𝑌𝑛)] = [𝑔′(𝜇)]2𝑉𝑎𝑟(𝑌) = [𝑔′(𝜇)]2𝜎2  (18) 

 

If we take 𝑔(𝑥) = 𝑥𝑘, then 𝜇 = 𝐸(𝑥𝑘) = 𝜇𝑘 and 𝑔(𝜇) = 𝜇𝑘
𝑘, and hence, 

𝑔′(𝜇) = 𝑘𝜇𝑘
𝑘−1. The large sample variance of the kth  moment is therefore 

approximately: 

 

     𝑣2 = 𝑘2𝜇𝑘
2(𝑘−1)

𝜎2       (19) 

 

which will be large for higher order moments. 

 

The expected value of the kth  sample moment is given by 
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          = 
kn

n
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1
 

          = k    (20) 

 

Hence, the estimator is unbiased for the kth  population moment. However, by using 

the Slutsky’s theorem, the variance of the estimates 𝑚𝑘 of 𝜇𝑘 is approximately equal 

to: 

 

       



n

i

k

ik XV
n

mV
1

2

1
 

 

      =  k

iXnV
n


2

1
 

 

      = 
2)1(221

  k

kk
n

   (21) 

 

which is very large, thereby making the density estimate undesirable. It is because of 

this that we propose to make use of the Huber’s m-estimation to obtain a more robust 

estimate of the 𝜇𝑘  and to minimize its variance. Hence, from equation (12), the 

proposed robust estimator is given by 

 

  
   

 







rn

ri

k

ik x
rn

m
12

1
ˆ ,        ,...2,1k   (22) 

 

4.2  Numerical Simulation 
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  Table 4.1  Estimators of the Population Moments: Sample size n = 20 

PROBABILITY 

DISTRIBUTIONS 
Estimator MSE BIAS 

Normal Classical 3416115.61 -69.95 

Student's t Classical 3416115.61 -69.95 

Uniform (Continuous) Classical 836.07 1.53 

Weibull Trimmed (p = 0.25) 0.56 0.98 

Exponential Trimmed (p = 0.25) 0.65 1.04 

Chi-Square Trimmed (p = 0.25) 177792.50 167.95 

Binomial Classical 508256.96 -89.94 

Hypergeometric Classical 253845.13 -117.20 

Uniform (Discrete) Classical 2140.19 4.52 

Negative Binomial Trimmed (p = 0.25) 6309657.74 920.18 

Geometric Trimmed (p = 0.25) 0.11 0.53 

Bernoulli Trimmed (p = 0.25) 2.05 0.75 

  

 

 Table 4.2  Estimators of the Population Moments: Sample size n = 30 

PROBABILITY 

DISTRIBUTIONS 
Estimator MSE BIAS 

Normal Classical 5804254.20 -10.99 

Student's t Classical 5804254.20 -10.99 

Uniform (Continuous) Classical 971.51 1.46 

Weibull Trimmed (p = 0.25) 0.45 0.95 

Exponential Trimmed (p = 0.25) 0.47 0.99 

Chi-Square Trimmed (p = 0.25) 156098.75 157.94 

Binomial Classical 174598.73 -104.57 

Hypergeometric Classical 180866.44 -44.60 

Uniform (Discrete) Classical 2029.25 -1.01 

Negative Binomial Trimmed (p = 0.25) 4805302.32 808.39 

Geometric Trimmed (p = 0.25) 0.09 0.58 

Bernoulli Trimmed (p = 0.25) 0.01 0.58 
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 Table 4.3  Estimators of the Population Moments: Sample size n = 100 

PROBABILITY 

DISTRIBUTIONS 
Estimator MSE BIAS 

Normal Classical 1663280.12 -2.05 

Student's t Classical 1663280.12 -2.05 

Uniform (Continuous) Classical 60.33 0.59 

Weibull Trimmed (p = 0.25) 0.42 1.21 

Exponential Trimmed (p = 0.25) 0.50 1.20 

Chi-Square Trimmed (p = 0.25) 40379.00 83.75 

Binomial Classical 1837835.54 32.25 

Hypergeometric Classical 3741886.37 -78.04 

Uniform (Discrete) Classical 49.47 0.00 

Negative Binomial Trimmed (p = 0.25) 1157071.65 407.67 

Geometric Trimmed (p = 0.25) 0.05 0.82 

Bernoulli Trimmed (p = 0.25) 0.75 0.59 

 

 

It is important to note that the best estimator of the symmetric distributions 

(continuous or discrete) is the classical for it gives consistently smallest MSE’s in all 

sample sizes. On the other hand, the estimator with trimming proportion p = 0.25 is 

appropriate in estimating the population moments of all skewed distributions that are 

considered in this study. These probability distributions are: Weibull, Exponential, 

Chi-Square, Negative Binomial, Geometric, and Bernoulli. The finding simply 

implies that the proposed robust estimator performs well as compared to the classical 

when the distribution of the data is asymmetric. 

 

 This result coincides with the findings of Tukey that if the distribution of the 

data deviates (skewed) from the normal distribution caused by the outliers, the 

trimmed and Winsorized means will provide robust estimates. This is important 

because in reality the distribution of the data may not be perfectly symmetric and 

some are contaminated by the outliers which cause the skewness. 

 

   The proposed estimator which is derived using Huber’s estimation is robust 

in estimating the features of the population moments. Through this estimator, the 

estimates are not affected by the extreme values since the data were trimmed at both 

the lower and upper tails of its distribution hence obtain smaller variance compared 

to the classical estimator. The performances of the estimators were determined 

through the MSE criterion derived from simulation experiments by Monte Carlo 

method.        
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5.  Conclusions 

 

            Based on the results, the appropriate estimator of the symmetric distributions 

is the classical estimator since it gives more stable estimates as manifested by its MSE 

compared to the proposed estimator. However, the estimator with trimming 

proportion p = 0.25 is more precise in estimating the population moments of the 

skewed distributions. 

 As to the efficiency of the estimators, the estimator with trimming proportion 

p = 0.25 has the smallest variance for asymmetric distributions. Thus, the proposed 

estimator is the most efficient estimator under this condition. However, the most 

efficient estimator for Weibull and exponential distributions is the robust estimator at 

p = 0.15. 
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