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FROM A POISSON PROCESS MODEL TO A  LAPLACIAN MARTINGALE 
PROCESS FOR EARTHQUAKE FORECASTING 

IN A REGION IN THE PHILIPPINES
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Abstract

The usual Poisson process for seismic hazard assessment  is utilized as basis for construct-
ing a Laplacian martingale process to respond to objections raised about the use of a Poisson model 
for forecasting earthquake occurrences. Seismic data from the Caraga Region of the Philippines 
were utilized in this study. The seismic signals themselves are shown to follow a power-law distri-

-
al times of earthquakes with intensity 4 or greater with less than 1% relative error for the Caraga 
region. The unpredictability of the occurrence of earthquakes of such magnitudes appear to share 
the same unpredictability property with the occurrence of the nth prime in analytic number theo-
ryto Ph.D. as well as aligned teaching assignments, research outputs and other scholarly works.

1.0 Introduction

 The power law distribution:

Roberto N. Padua, Noel G. Sieras, Merliza F. Libao, 
Marlon S. Frias, Philippines

is used as a probability model for seismic 
signals in a given location (Richter and Gut-
tenberg, 1956). Amitrano (2012) explains 
how the exponent changes with location on 
the earth’s surface. Earthquakes  with inten-
sity 4 or greater are of interest since such 
tremors become physically perceptible to 

then:

Let x
1
,x

2
,…,x

n
 be a sequence of seismic sig-

nals and let:

Here, S
k
 counts the number of 1’s up to time 

k  and:

where  is given in (3). More suc-
cinctly, the probability that k earthquakes of 

magnitude 4 or greater have occurred up to 
time n is:

 In this paper, we use a continuous – 
time formulation of (5) to construct two (2) 
stochastic processes, namely, the Poisson 
process and the Laplacian process to predict 
the occurrence of the (n+1)^th earthquake 
given the previous occurrences.

2.0 The Poisson Process Model

 We introduce the Poisson process 
model in this section as used in the litera-
ture. There are many views about the use of 
a Poisson process in modeling earthquakes 
with some authors claiming that it is in-
appropriate because of its “memory-less” 
property, others have argued otherwise and 
provide evidence to support the assumption 
in seismic hazard assessment that earth-
quakes are Poisson processes [Reiter, 1990; 
Bozorgnia and Bertero, 2004;Lombardi et 
al., 2005; Kossobokov, 2006]. This assump-
tion is routinely stated yet seldom tested or 

-
cy-magnitude distributions. Moreover, the 
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assumption of a Poisson process leads to a 
forecast that adds the same quantity every 
time to the previous observation.  Wang 
et al. (2014) provided new evidence and 
perspective on the Poisson process model 
for earthquakes to over 55,000 earthquake 
events in Taiwan since 1900. Wang et. Al. 
(2014) showed that the Poissonian hypoth-

earthquakes around Taiwan with a mean an-
nual rate as high as 1,600 is clearly reject-

a mean rate of 0.35 per year are concerned, 
the same hypothesis is statistically accepted 
for modeling their temporal randomness.

where:
 a) 
 b) N(t) has independent increments;
 c) N(t) over any interval of length t 
 is a Poisson random variable with 

t.

 and by independent in-
crements we mean that for any two disjoint 
intervals J

k
 and J

l
 , J

k l
=   , the events 

over J
k
 are independent of the events in J

l
. 

From (6),

 Greenhough (2007) stated that (7) 
can be thought of as an approximation to a 

 The function N(t) is a discontinuous 
step function. Let T

1
,T

2
,…,T

q
 be the jump 

is the greatest integer function, T
1 2

T
q
 are the arrival times of the earthquake 

events E.

Theorem 1. Under the Poisson model (7), 
the inter-arrival times t

k
= T

k
-T

k-1
,  k=1,2,…, 

n, T
0
=0, are exponentially distributed with 

Proof.  Consider t
1
= T

1
 and note that:

P(T
1

       =P(no arrival between 0 and time t)
        =P(N(t)=0)=e ,

hence, t
1 2

= T
2
-T

1
. Let 

s>0 and t>0 and the intervals (0, s] and 
(s,s+t] are independent.

 P(t
2 1

                                t
1
=s)

             =P(no arrival in (s,s+t])  by indepen-
    dent increments
 =e

and so:

 Ft
2
 (t)=1-e .

The rest follows by the same argument. 
 
 Theorem 1 can be used to forecast 
the occurrence of the nth  earthquakes since:

 pred (T
n
)=T

n-1
+E(t

n
),          (8)

where T
n-1

 is the most recent occurrence and 
t
n

objection raised by other seismological ex-
perts viz. adding the same quantity to the 
previous arrival time as a forecast function.

power law distribution needs to be estimat-
ed. Its maximum-likelihood estimator is:
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 Theorem 2.  The maximum likeli-

 Proof.  By the  Strong Law of Large 
Numbers (SLLN), we have:

Now, by integration:

Slutsky’s theorem states that:

3.0 The Laplacian Process

 The prediction given in (8) depends 
only on the latest occurrence (T

n-1
) time of 

the earthquake event of interest. However, 
the occurrence of an earthquake of large in-

-
shocks of magnitudes greater than 4.0. This 
suggests that the prediction equation will 
have to involve occurrences of the event 
other than just the latest.

 As before, let

 as occurrence depth at level k or 
simply  level k depth occurrence. For k=1, 
2 we have:

From (11), we obtain:

or

where d is random variable with the same 
distribution as d . Note that the sequence            
    is a sequence of dependent random 
variables while the sequence               is a 
sequence of independent random variables.

 Theorem 3. The sequence {d2,n

Proof.  
We observe that d =Y-Z where Y and Z are 
iid exp ( ). Hence d  is the difference of two 
(2) independent exponential random vari-
ables. The mgf of Y is:

and so:

which is the mgf of a Laplace random vari-

 We could, if we wanted to, use (12) 
to predict Tn. as follows:

 pred(Tn)=Tn-1+Tn-2 -Tn-3+E(d )    (13)

However, since E(d  )=0, (13) will under-es-
timate Tn. For this reason, we choose to put 
the forecasting problem in the context of a 
martingale.  

Filtration and Martingale Processes

 In order to make use of (13) in pre-
dicting Tn+1, we model the depth d  as a 
martingale process. This section develops 
this idea.
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-

 (a) If A    then Ac 

 N
of -algebras such that                       for every 
n

For example, if we have a stochastic pro-

t 1 2 n. Let    

1 2 n
algebra that makes the random variable 

1 2 n -
gebra     n represents the amount of informa-
tion available up to time n. Next, we con-

processes.

n: n

n an    n -

n is   n n 

In practical terms, we consider a stochas-
tic process indexed by discrete time T=N. 
For each n, n is a realization from some 
random process   n e.g. Wiener process, 
Brownian motion.

n 
n

 Theorem 4: The sequence            

n -

 is a martingale.

Proof.
 We verify the properties of a martin-

-
tion on n:

Assume that it also holds for n = k, that is,

Therefore,                      .  Hence, xn is adapt-
ed to    n.

 Note that as
the Laplace process.

Finally, we show that
almost surely for all n 

4.0 Simulation
   
 We use Equation (13) to predict 
the (n+1)th occurence  given the previ-
ous three(3) occurrences of earthquakes 
of magnitudes greater than or equal to 4.0. 

-
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tion whose location parameter equals the 
immediate past occurence depth value. The 
predicted (n+1)th arrival time is: 

For each Tn+1 we repeated process (12) one 
hundred (100) times. The absolute error: 

is computed and averaged out over 100 rep-
etitions. The mean absolute relative error is 
computed as the average of :

 The seed data used in this study were 
obtained from the Department of Science 
and Technology website of PHILVOLCS 
from January, 2011 to April, 2013 per day 
for the Caraga Region (Surigao area). We 
imputed missing observations by assuming 
that for days between two(2) occurrences of 
the event E that had no information, seismic 
readings of less than 4.0 intensity are ran-
domly imputed.

Figure 1 shows the histogram of the data set 
from PHILVOLCS:

 Figure 2, on the other hand, shows 
the plot of the summatory function N(t) for

t=1,2,3,…,n.
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 Figure 3 gives the arrival times of 
earthquakes of magnitude greater than or 

equal to 4 (from 1st  arrival to 123rd  arriv-
al).

 Figure 4 provides information on 
the distribution of the inter-arrival times of 

the earthquake events of interest:

 Figure 5 displays the histogram of 
the occurence depth d (2):
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 The histogram of the original obser-
vations as shown in Figure 1 is modeled as a 
power law distribution. The maximum like- while the actual number of arrival times is 

123.

 Simulation results show that the 
Laplacian martingale prediction model pro-
vides a better prediction of the occurrence 
of the nth earthquake with magnitude 4 or 

greater. Table 2 shows the average absolute 
error for the four(4) last occurrence times of 
earthquakes in the Caraga region:

5.0 Conclusion

 A Laplacian martingale process is 
a suitable model for predicting the occur-
rence of the nth earthquake of magnitude 4 

or greater in the Caraga region of the Phil-
ippines. The usual Poisson process model 
for seismic signals appears to be inferior in 
terms of predicting the nth occurrence of an 
earthquake as compared to the martingale 
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process proposed in this paper. The unpre-
dictability of the occurrence of earthquakes 
of such magnitudes appear to share the 
same unpredictability property with the oc-
currence of the nth prime in analytic num-
ber theory (Frias and Padua, 2016) since in 
both instances, the Laplacian martingale 
process delivered very close prediction to 
the nth occurrence of an event.
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